
Am. J. Hum. Genet. 68:466–477, 2001

466

Accounting for Unmeasured Population Substructure in Case-Control
Studies of Genetic Association Using a Novel Latent-Class Model
Glen A. Satten,1 W. Dana Flanders,2 and Quanhe Yang1
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We propose a novel latent-class approach to detect and account for population stratification in a case-control study
of association between a candidate gene and a disease. In our approach, population substructure is detected and
accounted for using data on additional loci that are in linkage equilibrium within subpopulations but have alleles
that vary in frequency between subpopulations. We have tested our approach using simulated data based on allele
frequencies in 12 short tandem repeat (STR) loci in four populations in Argentina.

Introduction

Although the case-control study is one of the primary
tools of epidemiology, it has fallen out of favor in studies
of the association of a candidate gene with occurrence
of disease, because of the possible effect of population
stratification (Li 1972; Lander and Schork 1994; Ewens
and Spielman 1995). Population stratification occurs
when the population under study is assumed to be ho-
mogeneous with respect to allele frequencies but in fact
comprises subpopulations that have different allele fre-
quencies for the candidate gene. If these subpopulations
also have different risks of disease, then subpopulation
membership is a confounder (Kleinbaum et al. 1982),
and an association between the candidate gene and dis-
ease may be incorrectly estimated without properly ac-
counting for population structure.

Unfortunately, the relevant population structure may
not be known. Epidemiologic studies may measure
crude indicators of subpopulation membership such as
race, but the relevant subpopulations may, in fact, be
more finely stratified. As a result, genetic epidemiolo-
gists have developed methods based on case-parent tri-
ads and using the transmission/disequilibrium test
(TDT) to measure the association between a candidate
gene and disease status (Self et al. 1991; Spielman et al.
1993). However, these approaches require genotyping
both of case patients and of their parents (resulting in
both an increase in required sequencing and the re-
quirement that at least one parent is available). Worse,
some case-parent triads are not informative. Although
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alternative approaches exist using other relatives (Spiel-
man and Ewens 1998) or a single parent (Sun et al.
1999), all such approaches require some additional as-
certainment of relatives and some additional genotyp-
ing. Finally, it should be recognized that effects of
population stratification may be reintroduced into TDT-
related methods that allow for missing parental data.
In particular, the assumption that the distribution of
genotypes of the sampled parents can be used to make
inferences about the missing parents is analogous to the
assumption that gene frequencies among case patients
can be compared with those among control patients.

Recently, however, several factors have led to a re-
surgence of interest in case-control studies of gene-dis-
ease association (Risch and Merikangas 1996; Morton
and Collins 1998; Risch and Teng 1998). Researchers
have begun collecting specimens, for genetic analysis in
large epidemiologic studies and surveys (National Cen-
ter for Health Statistics 1994; Surguchov et al. 1996;
Daly et al. 2000), that can be used to study a variety
of gene-disease and gene-environment associations.
Many case-control studies can be conducted using the
same stored specimens, without requiring genotypes of
relatives of case subjects. Although Wacholder et al.
(2000) argue that population stratification of an extent
large enough to distort results is unlikely to occur in
many realistic situations, it is still important to develop
methods that allow for control of population stratifi-
cation when analyzing case-control studies.

Fortunately, if population substructure affects allele
frequencies of the candidate gene, then it should also
affect allele frequencies of other genes as well (Devlin
and Roeder 1999; Pritchard and Rosenberg 1999).
Markers—that is, genes that are markers of population
substructure and that (1) segregate independently both
from each other and from the candidate gene and (2)
are not themselves associated with disease or in linkage
disequilibrium with genes associated with disease—can
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be used to make inferences about the existence of pop-
ulation substructure in a sample (Pritchard and Rosen-
berg 1999) and even to reconstruct the underlying pop-
ulation substructure in an observed sample (Pritchard
et al. 2000a). Additionally, binary markers (e.g., single-
nucleotide polymorphisms) can be used to control for
differences in relatedness between cases and controls
that occur when population substructure confounds the
relation between disease and a candidate gene (Devlin
and Roeder 1999; Bacanu 2000; Devlin, in press).

In this study, we use a novel latent-class analysis to
use data on markers to make inferences about the as-
sociation between a candidate gene and the occurrence
of disease in a population that may be subject to pop-
ulation stratification. Latent-class methods have been
used extensively in sociology to analyze questionnaire
data by using correlations in responses to related ques-
tions to make inferences about subgroups of people with
common attitudes or beliefs (see, e.g., Henry 1983).
Inferences concerning population substructure in a sin-
gle sample, using correlations in genotypes at loci that
are unrelated to disease, can also be accomplished us-
ing latent-class analysis. However, a case-control study
comprises two separate samples (one of case subjects
and the other of control subjects); if different subpopu-
lations have different disease risks, we can expect the
proportions of case patients from each subpopulation
(class probabilities) to differ from the corresponding
proportions of control subjects. Two separate latent-
class analyses, one using data from case subjects and
the other using data from control subjects, can lead to
logical inconsistency, because different population sub-
structure might be inferred in each population. If this
occurs, data from case subjects and control subjects
could not be recombined to calculate the odds ratio for
the association between the candidate gene and disease.
The approach we take here properly accounts for the
differences between the sample of case subjects and the
sample of control subjects, while assuming that case
subjects and control subjects derive from the same target
population.

Model

The quantities of primary interest are those that relate
disease (denoted by the binary variable D) to a (possibly
vector-valued) genetic risk factor G. This relation may
be confounded by the existence of population stratifi-
cation. Unfortunately, we may not know which sub-
populations have the differential rates of disease or prev-
alence of the candidate gene G that, if not properly
accounted for, will result in improper inference about
the relation between D and G. In addition, separate

sampling of cases and controls must be properly ac-
counted for in any analysis.

As a heuristic approximation of the complex genetic
history that may have led to the current population
substructure, we assume that the overall population
comprises K subpopulations, each having different fre-
quencies of G and D. In the development below, we
suppress an index i corresponding to the ith individual.
We denote by Z the (unmeasured) covariable Z that
indicates the subpopulation to which an individual be-
longs. Because different subpopulations may have dif-
ferent frequencies of other mutually independent
marker genes that are unrelated to disease, we propose
to use a novel latent-class approach to infer the pop-
ulation substructure while simultaneously estimating
parameters relating G to D. Let denote the allele atcX�

marker on chromosome (numbering of chro-� c p 1, 2
mosomes is arbitrary) and let ,1 2 2…X p (X , X , , X )1 1 L

where L is the number of marker loci. In the analysis
that follows, we assume that Hardy-Weinberg equilib-
rium holds in each subpopulation. Relaxing this as-
sumption by considering to represent genotype dataX�

is possible; however, human populations rarely show
much divergence from Hardy-Weinberg equilibrium
once population substructure has been accounted for
(Committee on DNA Forensic Science 1996, pp. 104
and references cited therein).

We assume that the genes at the marker loci are un-
related to disease, that is,

Pr[DFG,X,Z] p Pr[DFG,Z] . (1)

We further assume that, for persons in the same sub-
population, the marker loci are in linkage equilibrium
with the candidate gene G, so that

Pr[XFG,Z] p Pr[XFZ] . (2)

This assumption can be met, for example, by choosing
marker loci on different chromosomes from the chro-
mosome where G is found. Finally, we assume that Z
is a confounder but not an effect modifier—that is, that

Pr[D p 1FG,Z p k]
log{ }Pr[D p 0FG,Z p k]

{ v (G) p m � d � b 7 G , (3)k k

where we take for identifiability. In a case-� d p 0k k

control study, we cannot usually expect to estimate m,
although we will see that the s are, in fact, estimabledk

and that there is even some information on m. An im-
mediate consequence of equations (1) and (2) is that

. We assume Hardy-WeinbergPr[XFG,Z,D] p Pr[XFZ]
equilibrium holds within each stratum, so that
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1 1 2 2 2 2…Pr[X p j ,X p j , ,X p j FZ p k]1 1 1 1 L L

L 2

p � � p ,c�kj�
�p1 cp1

where is the proportion of per-cp p Pr[X p jFZ p k]�kj �

sons in subpopulation k having allele j at marker locus
.�
Because case subjects and control subjects can be con-

sidered as representative samples from the segments of
the population with and without disease, we base our
inference on . To account for populationPr[X,GFD]
stratification, we write

K

Pr[X,GFD] p Pr[X,GFD,Z p k]Pr[Z p kFD] .�
kp1

Assume that G takes values ; let…M � 1 g { 0, ,g0 M

be the proportions of personsdp p Pr[Z p kFD p d]k

in each subpopulation by disease status; let g pkm

Log{Pr[G p g FD p 0,Z p k]/Pr[G p g FD p 0,Z pm 0

; and let . After some algebra, we…k]} g p (g , ,g )k k1 kM

find that

1 1 2 2…Pr[X p j , ,X p j ,G p gFD p d]1 1 L L (5)
L 2K (db�g )7gke dp p � � p c� k �kj .M (db�g )7g �km m1 �� e �p1 cp1kp1 mp1

Likelihood (5) is for a single individual; the likelihood
for all individuals in the study is the product of terms
such as (5) for each participant.

We may choose b, , and as separate parameters0 1p pk k

to be maximized; it is possible to show that choosing
and as independent parameters is equivalent to a0 1p pk k

model in which we choose and as parameters. The0p dk k

situation is more complicated with parameters . Forgkm

example, if G has r alleles, then there are r(r � 1)/2 �
values of for each k. However, if Hardy-Weinberg1 gkm

equilibrium holds in each subpopulation, then only r �
parameters are required to specify all the s for a1 gkm

given k. Unfortunately, even if Hardy-Weinberg equilib-
rium holds in each subpopulation, it will not hold among
control subjects if the candidate gene is, in fact, associated
with disease (Sasieni 1997). This is because the distri-
bution of G among control subjects is given by

Pr[G p gFD p 0,Z p k]j

1 Pr[G p gFZ p k]j1�v (g )k j

p .1� Pr[G p g FZ p k]′j1�v (g )′k j′j

Hence, the overall magnitude of the departures from
Hardy-Weinberg equilibrium among control subjects is

primarily determined by m, as defined in equation (3). If
we assume a rare disease (corresponding to m being large
and negative), then Pr[G p gFD p 0,Z p k] ≈ Pr[G pj

, and we can maximize (5) directly with respectgFZ p k]j

to parameters b, and parameters in the model for0 1p , pk k

. Even if the disease is rare, the distri-Pr[G p gFZ p k]j

bution of G among case subjects does not correspond to
Hardy-Weinberg equilibrium unless .b p 0

In the absence of an approximation of rare disease,
we can still proceed without difficulties, as long as G
is binary (i.e., if certain genotypes correspond to low
risk and others to high risk). In this case, there is a
single for each k, which may be treated as an inde-gk

pendent parameter in place of . We feelPr[G p 1FZ p k]
that it is unlikely that a reasonable estimate of m can
be obtained using case-control data alone, and, hence,
either the approximation of rare disease should be made
or several analyses using various binary genotypes G
should be undertaken.

Although the likelihood (5) can be evaluated directly,
the large number of parameters suggests use of the E-
M algorithm. In this approach, the subpopulation to
which each individual belongs is treated as missing data.
This is easily accomplished, because all calculations in
the E step can be carried out in closed form and the
values of and can be estimated in closed form.dp pk �kj

To estimate the parameters b and , a simple maxi-gk

mization must be carried out, corresponding to fitting
the model

Pr[G p gFD p d,Z p k]
(db�g )7gke

p (6)M
(db�g )7gkm m1 � � e

mp1

to tables, using maximum likelihood. InK2 # (M � 1)
this calculation, the “data” are the expected proportion
of persons having , , and , availableD p d Z p k G p g
from the previous E step. If (i.e., if G is binary),M p 1
then the calculation reduces to a logistic regression anal-
ysis in which G is considered the outcome and D and
Z are explanatory variables. If , then the approx-M 1 1
imation of rare disease should be made and an appro-
priate model for should be chosen to reflect Hardy-gkm

Weinberg equilibrium among the controls. For example,
if and outcomes and correspondM p 2 G p g ,g g0 1 2

to persons having zero, one, or two copies of a disease-
causing allele, then we take , whereg p (ln2 � a ,2a )k k k

is the log of the odds that a person in the kth sub-ak

population has the disease-causing allele.
Likelihood (5) can be maximized using the E-M al-

gorithm for a fixed number of subpopulations K. To
estimate the number of subpopulations, we propose to
select the value of K that minimizes the Akaike infor-



Satten et al.: Accounting for Population Substructure 469

Table 1

Allele Frequencies for 12 STR Loci in Four
Argentinean Populationsa

STR
LOCUS

POPULATION

European Mapuche Tehuelche Wichi

FABP .589 .683 .732 .485
.110 .058 .107 .162
.300 .260 .161 .353

CSF1P0 .330 .266 .339 .226
.313 .282 .232 .194
.298 .367 .411 .581
.059 .085 .018 .000

D6S366 .082 .091 .143 .000
.204 .114 .071 .000
.277 .341 .446 .557
.119 .136 .036 .086
.091 .125 .036 .029
.183 .159 .143 .200
.028 .011 .018 .071
.015 .023 .107 .057

F13A .151 .222 .357 .173
.060 .122 .125 .077
.202 .122 .054 .346
.209 .178 .143 .115
.325 .344 .304 .288
.053 .111 .017 .000

FES .260 .170 .143 .257
.420 .500 .714 .543
.247 .284 .107 .043
.073 .045 .036 .157

TH01 .233 .526 .286 .132
.250 .298 .429 .721
.105 .088 .018 .000
.185 .026 .089 .015
.226 .140 .179 .132

HPRTB .032 .000 .000 .000
.179 .032 .091 .000
.317 .323 .227 .357
.285 .403 .591 .167
.137 .242 .091 .357
.050 .000 .000 .119

vWA .063 .096 .036 .014
.099 .077 .054 .014
.294 .577 .429 .514
.297 .125 .214 .343
.246 .212 .268 .114

D13S317 .09 .02 .000 .000
.16 .24 .150 .464
.06 .07 .050 .179
.29 .12 .150 .089
.25 .26 .300 .089
.10 .18 .225 .179
.04 .11 .125 .000

D7S820 .156 .07 .05 .0
.115 .05 .05 .07
.276 .22 .175 .125
.245 .42 .525 .45
.159 .21 .20 .25
.046 .03 .0 .105

D16S539 .156 .11 .225 .125
.100 .13 .075 .232
.294 .24 .10 .321
.159 .37 .55 .250
.195 .15 .05 .071

RENA-4 .772 .719 .881 .69
.074 .229 .023 .0
.153 .041 .095 .31

a Adapted from Sala et al. (1998, 1999).

mation criterion (AIC), which is given by �2logL �
, where P is the number of parameters fit. If is the2P PG

number of parameters required to specify for a singlegk

stratum and is the number of free parameters in b,Pb

then total no. of marker alleles � no. ofP p K ∗ (P �G

marker loci) � . To estimate K, we start2 ∗ (K � 1) � Pb

with a single population ( ) and increase K by 1K p 1
until the AIC begins to increase. This procedure assumes
that the first minimum in the AIC corresponds to the
global minimum. In some small-scale simulations, this
appears to be the case (results not shown). Moreover,
when the number of subpopulations K is greater than
or equal to the number used to generate the data, the
values of b appear to change very little (results not
shown). Additional details on the E-M algorithm used
are found in the Appendix.

Because of the large number of parameters fit, we
recommend that variance estimates be calculated using
a parametric bootstrap procedure (Efron and Tibshirani
1998), conditional on the total numbers of case subjects
and control subjects. In this procedure, simulated data
sets are constructed using the parameter estimates ob-
tained from fitting the latent-class model. Specifically,
for each observation data on subpopulation is generated
conditional on case or control status using the estimated
values of , for case subjects, or of , for control1 0p pk k

subjects. Then, data on the candidate gene is simulated
using (6) and the estimated values of b and the appro-
priate . Finally, marker values are simulated using thegk

estimated values of . A total of T such data sets arep�kj

generated, and estimates of b, denoted by , are ob-(t)b̂

tained. The variance of can then be estimated to beb̂

the empirical variance of the values, and confidence(t)b̂

intervals can be calculated using the percentiles of the
values (Efron and Tibshirani 1998).(t)b̂

Example 1: Discrete Subpopulations

A classic example of population substructure affecting
a case-control study occurred in a population that was
an admixture of European and Pima ancestry (Knowler
et al. 1988). In this study, an association between a can-
didate gene and insulin-dependent diabetes type 1 ac-
tually resulted from confounding caused by population
substructure. To illustrate our approach, we considered
an analogous scenario based on an admixture of Eur-
opeans and American Indians. Sala et al. (1998, 1999)
have published allele frequency data on twelve short
tandem repeat (STR) loci in Argentineans of European
ancestry, as well as in three Argentinean American In-
dian groups (Mapuche, Tehuelche, and Wichi). We have
used these allele frequencies to simulate a population
that comprises four subpopulations that differ in disease
risk and frequency of a candidate-gene allele that is as-
sociated with disease.
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Table 2

Results of Analyses of Simulated Data Using 12
STR Loci with 250 Study Participants (125 Case
Patients and 125 Control Patients) and Four
Distinct Subpopulations

ANALYSIS

AND VARIABLE

PARAMETER

b1 b2 K

True value .000 1.000 4.00
Crude analysis:

Average .366 1.760 1.00
Standard error .285 .370 …

Latent class:
Rare disease:

Average .061 1.006 3.53
Standard error .293 .453 .76

Binary genotype:
Average .021 1.095 3.14, 3.27
Standard error .377 .540 .91, .62

Full data:
Rare disease:

Average .052 .995 4.00
Standard error .276 .405 …

Binary genotype:
Average �.002 1.043 4.00
Standard error .331 .470 …

Table 3

Results of Latent-Class Analyses of
Simulated Rare-Disease Data Using Six
STR Loci with Varying Sample Sizes and
Four Distinct Subpopulations

SAMPLE SIZE

(CASES/
CONTROLS)
AND VARIABLE

PARAMETER

b1 b2 K

True value .000 1.000 4.00
125/125:

Average .023 .883 3.32
Standard error .865 1.718 .69

250/250:
Average .023 .962 3.37
Standard error .226 .394 .61

Because Sala et al. (1998, 1999) sampled ∼10 times
more persons of European ancestry than persons of any
of the other three ethnic groups, we combined some STR
alleles to reduce the number of alleles having zero fre-
quency in one or more American Indian populations. As
a general rule, we combined adjacent alleles until the
allele frequency in at least one population was �5%.
The resulting allele frequencies are shown in table 1. An
exception was HPRTB, where allele frequencies of zero
were allowed for small numbers of repeats in the Amer-
ican Indian groups, since there appears to be a consistent
increase in number of repeats in the non-European
groups. Occurrence of alleles in one population that are
missing in another makes identification of population
substructure easier; hence, our decision to combine al-
leles actually makes it more difficult to identify subpopu-
lations. All STR loci but HPRTB are autosomal; to avoid
generating gender, we used the HPRTB allele frequencies
to generate data as if HPRTB were an autosomal locus.

We generated 500 data sets using the allele frequencies
in table 1, assuming that Argentinean Europeans con-
stituted 70% of a hypothetical target population and
that each American Indian group constituted 10%. In
addition, data on a biallelic candidate gene was gener-
ated, which was assumed to be in Hardy-Weinberg equi-
librium in each subpopulation. Persons who were ho-
mozygous for the disease-causing allele had an increased
risk of disease corresponding to a log-odds ratio of 1.0
(relative risk ). Persons who were heterozygousp 2.72

for the disease-causing allele had no increase in risk. The
prevalence of the disease-causing allele was chosen to be
0.277, 0.341, 0.446, and 0.557 in the European, Map-
uche, Tehuelche, and Wichi populations, respectively
(the frequencies of allele 3 of locus D6S366). The log
of the odds of disease among persons with zero or one
copies of the disease-causing allele was �5, �4, �3, and
�3 in the European, Mapuche, Tehuelche, and Wichi
populations, respectively. These values correspond to a
prevalence of disease among persons without the dis-
ease-causing allele of 0.7%, 1.8%, 4.7%, and 4.7%,
respectively. Data were generated until 125 case patients
and 125 control patients were obtained. Because the
disease is rare, the distribution of ethnic groups among
control patients was approximately that of the target
population (70.5%, 10.1%, 9.6%, and 9.8% in the 500
simulated data sets). However, the distribution of ethnic
groups in the case patients was noticeably different, with
26.1% European, 10.7% Mapuche, 29.8% Tehuelche,
and 33.4% Wichi.

In tables 2 and 3, we show the results of a number
of analyses of these simulated data. The crude analysis
corresponds to calculation of the association between
disease and the candidate gene using a single 2#3 table.
The second analysis is the latent-class analysis that es-
timates and simultaneously, assuming the diseaseb b1 2

is rare. The third and fourth analyses are the latent-class
binary genotype model estimates of (using data onlyb1

from persons with zero or one copy of the disease-caus-
ing allele) and (using data only from persons withb2

zero or two copies of the disease-causing allele). Finally,
we give results of two analyses that use the true sub-
population data, in which b is estimated by maximiza-
tion of the likelihood for marker and candidate-gene
data, given case/control status and knowledge of sub-
population. The first makes the rare-disease approxi-
mation (i.e., assumes Hardy-Weinberg equilibrium in
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Figure 1 Nominal versus actual coverage of bootstrap confi-
dence intervals for (proportion of 100a% confidence intervals thatb1

contain the true value of ) for the discrete subpopulation data inb1

example 1.

Figure 2 Nominal versus actual coverage of bootstrap confi-
dence intervals for (proportion of 100a% confidence intervals thatb2

contain the true value of ) for the discrete subpopulation data inb2

example 1.

control patients) and estimates and simultaneously.b b1 2

The second estimates (using data only from personsb1

with zero or one copies of the disease-causing allele) and
(using data only from persons with zero or two copiesb2

of the disease-causing allele) using only binary candi-
date-allele data. For all simulations, the average and em-
pirical standard error of parameter estimates from the
500 simulations are presented.

Because and from the crude analysis differ mark-b b1 2

edly from the values used to generate the data (b p 01

and ), the population substructure has a largeb p 12

effect. However, the results of the latent-class analysis
are close to the true values, even though we used only
12 STR loci to reconstruct the population substructure.
In addition, the standard errors of the rare-disease latent-
class estimators are only slightly higher than that of the
maximum-likelihood estimator obtained using infor-
mation on true subpopulation membership (e.g., 0.453
for the latent-class rare-disease estimate of , comparedb2

with 0.405 for the equivalent analysis using the true
population substructure). This indicates that group
membership is determined with fairly high precision. The
standard error for the binary-genotype analyses is higher
than the rare-disease approximation, because each anal-
ysis uses fewer data than the rare-disease model does.
Given the estimate of from either the rare-diseaseb ≈ 01

analysis or the binary-genotype analysis using only per-
sons with zero or one copy of the disease allele, another
valid analysis would be a comparison of persons with
zero or one copy of the disease allele with persons with
two copies in a binary-genotype analysis.

To examine the effect of the number of STR loci on
our estimator, we also analyzed the simulation data sets
using only the first six STR loci in table 1, by means of

the rare-disease model (table 3). The estimator of isb1

still good, but is noticeably further from its true value.b2

However, even with only six STR loci, adequate per-
formance can be achieved by increasing the sample size
to 500 (250 case patients and 250 control patients).

The estimated number of subpopulations, , was cho-K̂
sen to minimize the AIC, as was described in section 2.
The value of obtained by our method was, on average,K̂
lower than the true value of 4, possibly because one sub-
population constitutes only 10% of cases and controls.
When we increased the sample size to 250 case patients
and 250 control patients, the average number of sub-
populations detected increased to four (which was also
the number of subpopulations most frequently selected).

We assessed the coverage (proportion of intervals con-
taining the true value) of confidence intervals obtained
using the parametric bootstrap procedure described in the
previous section. For each of 200 data sets (each with
125 case patients, 125 control patients and using all 12
markers), we generated 200 bootstrap replicates and cal-
culated confidence intervals for and using the per-b b1 2

centile method (Efron and Tibshirani 1998). Figures 1
and 2 compare the nominal and actual coverage of these
confidence intervals. Ideal behavior corresponds to a 45�
line corresponding to nominal and actual coverage being
equal. The 95% confidence interval for contained theb1

true value of 0 in 98% of the simulations, and the 95%
confidence interval for contained the true value 1.0 inb2

97% of the simulations. Ideally, 1200 bootstrap replicates
should be used to calculate a confidence interval, and we
chose only 200 replicates per data set, to reduce the com-
putational burden of analyzing 200 data sets. In practice,
at least 500 replicates should be used. The bootstrap can
also be used to estimate the standard error of . Theb̂
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Table 4

Results of Analyses of Simulated Data Using 12 STR Loci with 250
Study Participants (125 Case Patients and 125 Control Patients)
and No Population Substructure

ANALYSIS

AND VARIABLE

PARAMETER

b1 b2 K

True value .000 1.000 1.00
Latent class:

Rare disease:
Average .041 1.023 1.34
Standard error .253 .414 .66

Binary genotype:
Average .012 1.086 1.30, 1.25
Standard error .276 .463 .64, .60

Full data:
Rare disease:

Average .028 1.017 1.00
Standard error .229 .392 …

Binary genotype:
Average .013 1.076 1.00
Standard error .267 .448 …

Table 5

Results of Analyses of Simulated Data Using 12 STR Loci with 250
Study Participants (125 Case Patients and 125 Control Patients)
and a Continuous Admixture of Four Ancestral Subpopulations

SAMPLE SIZE

(CASES/
CONTROLS),
ANALYSIS, AND

VARIABLE

PARAMETER

b1 b2 K

True value .000 1.000 �
125/125:

Crude analysis:
Average .178 1.415 1.00
Standard error .283 .402 …

Latent class:
Average .077 1.079 3.05
Standard error .291 .485 1.04

Full data:
Average .027 .992 �
Standard error .261 .387 …

500/500:
Latent class:

Average .044 1.018 4.40
Standard error .141 .224 1.41

Full data:
Average .021 .990 �
Standard error .131 .193 …

average bootstrap estimators of the standard error of b̂1

and for the rare-disease model are 0.313 and 0.498,b̂2

close to the standard errors of the simulated data sets
(0.293 and 0.453, respectively).

To assess the performance of our method when strat-
ification was not present, we also generated case-control
data as above, but sampled individuals exclusively from
the European subpopulation. The results of analyses of
500 simulated data sets using the rare-disease model are
summarized in table 4. The method performed well,
properly identifying the true number of subpopulations
(1) in 74% of the data sets. The average of the estimates
of parameters and is also close to their true values,b b1 2

and the variability of these estimates is close to the values
obtained by maximum likelihood, using a model that
ignores stratification.

Example 2: Continuous Admixture of Ancestral
Populations

The latent-class model we have described assumes the
existence of discrete subpopulations, each with a set of
characteristic allele frequencies. Although this model
may accurately describe some populations, a more com-
mon situation may be many small, related subpopula-
tions or a continuous mixture of ancestral populations.
However, even if the underlying population is a contin-
uous mixture, the discrete-subpopulation model may
provide adequate inference on the odds ratio relating the
candidate gene and disease. It is known that a stratified
analysis with a few well-chosen strata often can control
for confounding, even if the confounding is caused by
continuous variables (Rosenbaum and Rubin 1984). To
assess this, we conducted a simulation study in which

data were generated using a continuous mixture model
(corresponding to an infinite number of subpopulations).
Specifically, we assumed that the population was a con-
tinuous admixture of four ancestral populations. We as-
sumed the four Argentinean populations described in
example 1 were the ancestral populations. Following
Pritchard et al. (2000a), for each individual we generated
a Dirichlet random variable Y with four components

. The kth component of Y represents the prob-…y , ,y1 4

ability that an allele for this individual is from ancestral
population k. As a result, the frequency of allele j at
locus for an individual with random variable Y can�
be written as , where, in a slight abuse…y p � � y p1 �1j 4 �4j

of notation, denotes the frequency of allele j at locusp�kj

in the kth ancestral population. The parameters of the�
Dirichlet distribution used were (0.7, 0.1, 0.1, 0.1), so
that 70% of the total genome of the target population
was of European origin, with a contribution of 10%
from each of the American Indian populations. This
choice of parameters ensures a wide range of variability
among individuals, and ∼40% of persons had a plurality
of their genome taken from one of the American Indian
populations. We also assumed the risk of disease was a
linear function of Y. Letting n p (�5.0, � 4.0, �

, we took the odds of disease for a person3.0, � 3.0)
with Dirichlet vector y to be . Hence, the prevalencen 7 y
of disease among persons without the disease-causing
allele ranged from 0.7%, for persons with entirely Eu-
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Figure 3 Nominal versus actual coverage of bootstrap confi-
dence intervals for (proportion of 100a% confidence intervals thatb1

contain the true value of ) for the continuous admixture data inb1

example 2.

Figure 4 Nominal versus actual coverage of bootstrap confi-
dence intervals for (proportion of 100a% confidence intervals thatb2

contain the true value of ) for the continuous admixture data inb2

example 2.

ropean ancestry, to 4.7%, for persons with exclusively
Tehuelche or Wichi ancestry. Among cases, the propor-
tions of persons with European, Mapuche, Tehuelche,
and Wichi as the most prevalent ancestral component
were 46%, 10%, 21%, and 23%, respectively, whereas
the equivalent proportions among controls were 60%,
9%, 15%, and 16%.

The results of fitting the latent-class model to these
data are shown in table 5. Generally the mean value of
the estimates of and were comparable to the sit-b b1 2

uation in example 1, in which the population was a
discrete mixture. On average, three subpopulations were
chosen using the AIC criterion. For the relatively small
sample size we considered, the bias in the estimated log-
odds ratio for the latent-class model was ∼0.08. The
ratio of the standard error of the latent-class estimator
of b over the standard error of the “full data” estimator
of b obtained by maximizing the likelihood of the ge-
notype given disease status and knowledge of the Dirich-
let vector Y is larger than the equivalent comparison
when the underlying population substructure is discrete.
To determine how sample size affects performance of
the latent discrete latent-class model with continuous
admixture data, we increased the sample size to 500
cases and 500 controls. These results, also shown in table
5, indicate that the bias of the latent-class model de-
creases considerably when the sample size is increased.
The increase in variability of the latent-class estimators
over the full-data model is also reduced. Additionally,
the estimated number of subpopulations increased. Al-
though we have not considered it, it is reasonable to
expect that an increase in the number of informative
markers would also improve performance.

Because the number of subpopulations seemed small
in light of the large variability of the Dirichlet distri-

bution used to generate the data, it seemed possible that
the coverage of confidence intervals calculated using the
parametric bootstrap would be too low (recall that, for
a given data set, each bootstrap replicate is generated
assuming subpopulations, where is the estimatedˆ ˆK K
number of subpopulations obtained by minimizing the
AIC for that data set). Surprisingly, this apparently was
not the case. Coverage of bias-corrected (Efron and Tib-
shirani 1998) confidence intervals for and for ourb b1 2

simulations with 125 cases and 125 controls are shown
in figures 3 and 4, respectively. The departure from li-
nearity in figure 4 is not significant (Kolmogorov-Smir-
nov test, , indicating failure to reject the hy-P 1 .15)
pothesis that the actual coverage is equal to the nominal
coverage). The average bootstrap estimators of the stan-
dard error of and for the rare-disease model areˆ ˆb b1 2

0.293 and 0.468, close to the standard errors of the
simulated data sets (0.291 and 0.485, respectively).

Hypothesis Testing

We have focused on parameter estimation in this paper.
However, several approaches to hypothesis testing are
also possible. One approach corresponding to a Wald
test is to fit the latent-class model and obtain bootstrap
confidence intervals for the odds ratio parameters; the
null hypothesis is rejected at the level of 100 %(1 � a)
if the corresponding confidence interval excludes the null
value.

An alternative would be a permutation test in which
the case or control status was randomly reassigned (in
such a way that the total number of cases and controls
was preserved). Then, the latent-class model could be
fit to the permuted data. A significant association at the
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level of 100 % would be found if the odds ratio(1 � a)
, estimated from the true data, were larger than thebk

corresponding quantile of values, estimated using thebk

permuted data.
A final alternative would be to use a likelihood-ratio

test, maximizing the likelihood as described above and
then again, while holding the odds ratio fixed at its null
value. Although this approach is computationally easier,
the large number of nuisance parameters (the marker-
allele frequencies) makes it somewhat suspect. Addi-
tionally, the null and alternative likelihood calculations
would have to be constrained to have the same number
of subpopulations, which is contrary to the spirit of our
approach. Hence, the likelihood-ratio test probably
should not be used without further simulation studies
of its validity.

Discussion

Differences in allele frequencies between subpopulations
result from population genetic processes, including mu-
tation, selection, genetic drift, and population dynamics
(e.g., inbreeding or migration). As a result of these pro-
cesses, a relation may exist between the differences in
allele frequency across subpopulations in a candidate
gene and differences in allele frequency in STR or other
marker genes. If selection does not act on alleles of the
candidate gene, then differences in allele frequency in a
candidate gene between subpopulations and differences
in allele frequency in STR or other marker genes should
be comparable. As a consequence, the extent to which
confounding can be caused by population substructure
should be related to the ease with which it can be de-
tected and accounted for, with larger effects being easier
to detect (Pritchard and Rosenberg 1999). The simula-
tion example we considered had a great deal of popu-
lation stratification and a correspondingly large amount
of confounding. We were able to account for the effect
of population stratification using only 12 STR loci (even
after some pooling of alleles); even our analyses that used
only 6 STR loci were successful. Presumably, a popu-
lation with less stratification would require more marker
loci (and, possibly, a larger sample size) to resolve the
population structure; however, we would expect that the
confounding, caused by population structure, of the as-
sociation of a candidate gene with disease would be con-
comitantly smaller. Selection acting on alleles of the can-
didate gene may alter this relation. If selection reduces
differences in allele frequencies of the candidate gene,
then population substructure is still identifiable, but con-
founding is less than otherwise might be expected. If
selection increases differences in allele frequency in the
candidate gene, then the situation is more serious. How-
ever, in this case, the candidate gene is itself an infor-

mative marker of population substructure. If the can-
didate gene is the only gene with allele frequencies that
differ between subpopulations, then our approach (and
any other based on inferring population substructure
using marker genes) will fail. However, this case is un-
likely to arise in human populations. By selection pres-
sure, we mean differences in reproductive fitness; the
allele frequencies of genes that may be associated with
adult-onset cancer, heart disease, or other chronic dis-
eases are unlikely to be altered by selection.

Two general approaches exist to account for popu-
lation stratification. One is to attempt to model the
population substructure; this is the approach we took
and is also the approach of Pritchard and colleagues
(Pritchard et al. 2000a, 2000b). The other is the ge-
nomic control (GC) approach (Devlin and Roeder 1999;
Bacanu et al. 2000; Devlin et al., in press). We believe
that, within the modeling approach, our approach is
superior to that of Pritchard et al. for four reasons. First,
our model is a unified treatment of both occurrence of
disease and population substructure, whereas that of
Pritchard et al. is a two-step approach that estimates
substructure first and then tests conditional on the im-
puted structure. Because our model is unified, we can
provide parameter estimates rather than just test hy-
potheses; the approach of Pritchard et al. cannot be
generalized easily to provide parameter estimates. Sec-
ond, our procedure accounts for the variability in se-
lection of the number of subpopulations, while the test
of Pritchard et al. is conditional on the number of sub-
populations that are inferred using only the marker
data. The bootstrap procedure that we propose for cal-
culation of confidence intervals accounts for variability
in the estimated number of subpopulations by estima-
tion of this parameter for each bootstrap replicate.
Third, the procedure of Pritchard et al. requires a Gibbs
sampler that changes the number of parameters in the
model, and this type of sampler is notorious for con-
vergence problems. Our model uses a straightforward
likelihood approach. Finally, our model accounts for
differences in subpopulation structure that will occur
between cases and controls that are ignored by Pritchard
et al. who infer substructure without accounting for case
and control status. For example, in our simulation, al-
though case patients and control patients were simu-
lated from a population that was 70% European, only
26% of case patients were from the European subpopu-
lation. Because Pritchard et al. test for differences in
allele frequencies conditional on population substruc-
ture, the candidate gene cannot contribute information
about population substructure. In our approach, sub-
structure and disease-gene association are calculated si-
multaneously; hence, the candidate gene can contribute
to inferences about substructure. This is useful because,
if population substructure results in confounding, the
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candidate gene is necessarily informative about popu-
lation substructure.

Comparison with GC is more difficult, because the
GC approach to population stratification is different.
In a sense, the GC approach is more general, because
it applies to any situation in which cases and controls
might have differences in homozygosity (the other major
situation being cryptic relatedness, which occurs when
case patients may be more likely than control patients
to be closely related through a common ancestor). How-
ever, the GC approach is limited to binary marker and
candidate alleles and requires the additional assumption
that the effect of population structure is constant over
all loci. Our approach is likelihood-based and, hence,
should have better power in situations where a latent-
class model correctly describes underlying population
substructure. However, an advantage to GC is that an
underlying model of the population substructure does
not have to be specified. Furthermore, both approaches
reduce to the same unstratified analysis when there is
no population substructure. It is likely that GC requires
more marker loci (although large numbers of biallelic
SNP markers should be available soon), whereas con-
tinued identification of loci that are highly informative
of population substructure (e.g., Dean et al. 1994;
Shriver et al. 1997; Parra et al. 1998) should reduce the
number of loci required for the latent-class analysis.
Finally, GC provides hypothesis tests but not parameter
estimates. Because of the differences between GC and
our approach, a direct comparison of power, using the
example we have considered, is not possible.

Both the approach of Pritchard et al. and GC are tests
of association, not methods of estimating association
parameters. Estimation of the magnitude of the asso-
ciation between a candidate gene and disease is impor-
tant, even when population substructure is present. In
addition, even though a “significant” amount of pop-
ulation substructure is present, the actual effect on the
disease-gene odds ratio can easily be relatively small.
Knowing the magnitude of the effect of population
stratification on the odds ratio estimate may also be
important in assessing the extent of bias in case-control
studies in which this stratification may have been
ignored.

We used data on 12 STR loci to infer subpopulation
membership. These loci were chosen because their use
in forensic applications has resulted in publication of
allele frequencies in various subpopulations. Forensic
applications do not require (and, in fact, are compli-
cated by) varying allele frequencies across subpop-
ulations. Characterization of a set of loci that have
maximum variability across human subpopulations to
improve identification of the effect of population strat-
ification on case-control studies would be useful. To a
great extent, this parallels efforts to find markers that

distinguish subpopulations for mapping by admixture
linkage disequilibrium or for estimation of ethnic affil-
iation (Dean et al. 1994; Stephens et al. 1994; Shriver
et al. 1997; Parra et al. 1998; Collins et al. 2000). Our
initial success and those of Pritchard et al. suggest that
persons conducting case-control studies should consider
obtaining genotype information from cases and controls
at unrelated loci, such as the forensic STR loci we used
here to assess and control for the possible effects of
population stratification.

Appendix A

Because of the large number of parameters in our la-
tent-class models, it is important to choose good starting
values and to take steps to reduce the chance of the
program finding a local (rather than global) maximizer
of the likelihood. In this appendix, we discuss the al-
gorithm we used to achieve these goals.

We generated starting values for the E-M algorithm
as follows: We first identified a family of variables ,(r)ti

on the basis of a linear score for each allele. Variables
were chosen using principal components, so that they(r)ti

encompassed as much of the variability as possible in
the allele-frequency data. To accomplish this, suppose
that allele j at locus is assigned a numerical score (r)� c�j

and let , where is the number(r) L J (r)�t p � � c n ni �p1 jp1 �j i�j i�j

of copies of the jth allele at the th locus in the ith study�
participant. If the values of are taken to be the ithni�j

row of a matrix Y, values of correspond to the values(r)c�j

of the eigenvector corresponding to the rth largest ei-
genvalue of the matrix , where is a centered version

— — —TY Y Y
of Y.

Let denote the rank of among the study par-(r) (r)r ti i

ticipants. Then, the initial probability that the ith indi-
vidual was in stratum k was taken to be (r;0)f ∝ik

for where2�0.5∗(r �m /j) …i ke k p 1, ,K m p n(k � 0.5)/Kk

and . For this choice, note that thej p n(K � 0.5)/K
for any r, i, k, and .(r;0) (r;0) ′� �e � f /f � 1/ e k′ik ik

To avoid excessive influence of the initial value ,(r;0)fik

we adopted the following strategy. Let denote the(m)fik

estimate that the ith person is in subpopulation k after
m steps of the E-M algorithm. Rather than using to(m)fik

determine new estimates of the parameters b, g, , anddpj

, we used . We used˜(m) (m)p f p (1 � a )f � a a p�kj ik m ik m 0

and selected for , as follows. If and(m)0.5 a m � 1 bm

denote the estimates of b and g obtained after m(m)g

steps, then we used , unlessa p a d pm m�1 m

, in which(m) (m�1) 2 (m) (m�1) 2 �6�FFb � b FF � FFg � g FF ! 10
case we used , where denotes the Eu-1a p a FFxFFm m�12

clidean norm of the vector x. The algorithm was judged
to have converged when , as long as�7d ! 10 a !m m

.�710
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For one, two, or three subgroups, our algorithm in-
variably found the same maximum-likelihood estimates
of b, g, and when the starting values were changed.dpj

However, for four or more subgroups, a change in the
starting value sometimes resulted in small changes in the
final parameter estimates. Hence, whenever the number
of subgroups was four or more, we restarted the E-M
algorithm five times, using the five largest principal com-
ponent directions, as described above.

Although the steps described above do not guarantee
that the parameter estimates we obtained are global
maximizers of the likelihood, they do define the specific
algorithm used to obtain our parameter estimates. It is
possible that, in other situations (e.g., fewer or less-in-
formative marker alleles or smaller differences in sub-
populations), some of the choices we made should be
altered.
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